The structure of the core NuRD repression complex provides insights into its interaction with chromatin

نویسندگان

  • Christopher J Millard
  • Niranjan Varma
  • Almutasem Saleh
  • Kyle Morris
  • Peter J Watson
  • Andrew R Bottrill
  • Louise Fairall
  • Corinne J Smith
  • John W R Schwabe
چکیده

The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes.

BRAF35, a structural DNA-binding protein, initially was identified as a component of a large BRCA2-containing complex. Biochemical analysis revealed the presence of a smaller core-BRAF35 complex devoid of BRCA2. Here we report the isolation of a six-subunit core-BRAF35 complex with the capacity to deacetylate histones, termed the BRAF-histone deacetylase complex (BHC), from human cells. BHC con...

متن کامل

Insights into Association of the NuRD Complex with FOG-1 from the Crystal Structure of an RbAp48·FOG-1 Complex*

Chromatin-modifying complexes such as the NuRD complex are recruited to particular genomic sites by gene-specific nuclear factors. Overall, however, little is known about the molecular basis for these interactions. Here, we present the 1.9 Å resolution crystal structure of the NuRD subunit RbAp48 bound to the 15 N-terminal amino acids of the GATA-1 cofactor FOG-1. The FOG-1 peptide contacts a n...

متن کامل

The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis

IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKARO...

متن کامل

A high-resolution map of transcriptional repression

Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at hig...

متن کامل

p66a and p66b of the Mi-2/NuRD complex mediate MBD2 and histone interaction

The Mi-2/NuRD complex is a multi-subunit protein complex with enzymatic activities involving chromatin remodeling and histone deacetylation. Targeting of Mi-2/NuRD to methylated CpG sequences mediates gene repression. The function of p66a and of p66b within the multiple subunits has not been addressed. Here, we analyzed the in vivo function and binding of both p66-paralogs. Both factors functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016